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1. Introduction 
 

There is an ever-increasing interest in the study of 
soliton propagation through optical fibers. There are lots 
of results reported in various published papers, books 
and monographs. However, most of these results are in 
one-dimensional cases. While in realistic situation, it is 
necessary to propagate solitons in bulk, it is therefore 
necessary to address the issue of mass propagation of 
these pulses through optical fibers. It is only then 
efficiency can be achieved. This is only possible with 
dense wavelength multiplexed system (DWDM). This 
paper is going to study the dynamics of optical soliton 
propagation through DWDM system for Kerr and 
parabolic law nonlinearity. 

The integrability aspect of the governing equation 
will be the focus of research in this paper. It must be 
noted that there are several integration tools that are 
applicable to study these governing equations [1-15].  
These are Lie symmetry analysis, F-expansion scheme, 
ansatz approach, Kudryashov’s method and several 
others. This paper will be devoted to one such modern 
method of integrability. It is G’/G-expansion scheme. 
This algorithm will integrate the governing equation and 
will recover dark and singular solitons for the model 
with Kerr and parabolic laws of nonlinearity. There are a 
couple of other solutions that will be obtained which are 
of no interest in the optical fibers regime. 
 
 

2. Overview of G’/G-expansion scheme 
 

In this section, we describe the G’/G-expansion 
method [9-13] for finding traveling wave solutions of 
nonlinear partial differential equations (NLPDE).  

We assume that the given NLPDE for ),( txu  is in the 
form  

0...),,,,,( =ttxtxxxt uuuuuuP                      (1) 
 
where P  is a polynomial. The essence of G’/G-expansion 
method can be presented in the following steps:  

Step-1: To find the traveling wave solutions of Eq. (1), 
we introduce the wave variable  
 

)(),( ξUtxu = , ctx −=ξ                                   (2) 
 

Substituting Eq. (2) into Eq. (1), we obtain the 
following ODE 
 

0,...),,( =′′′ UUUQ                                              (3) 
 

Step-2: Eq. (3) is then integrated as long as all terms 
contain derivatives where integration constants are 
considered zeros. 

Step-3: Introduce the solution )(ξU  of Eq. (3) in the 
finite series form 
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where is  are real constants with 0≠Ms  and M is a 

positive integer to be determined. The function )(ξG  is the 
solution of the auxiliary linear ordinary differential equation 
 

0)()()( =+′+′′ ξµξλξ GGG                             (5) 
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where λ  and µ  are real constants to be determined.  

Step-4: Determining M , can be accomplished by 
balancing the linear term of highest order derivatives 
with the highest order nonlinear term in Eq. (3). 

Step-5: Substituting the general solution of (5) 
together with (4) into Eq. (3) yields an algebraic 
equation involving powers of G’/G.  Equating the 
coefficients of each power of G’/G to zero gives a 
system of algebraic equations for js , λ , µ  and c . 
Then, we solve the system with the aid of a computer 
algebra system, such as Maple, to determine these 
constants. Next, depending on the sign of the 
discriminant µλ 42 −=∆ , we get solutions of Eq. (3). 
So, we can obtain exact solutions of the given Eq. (1). 
 

2.1 Application to NLSE  
 
 This section will apply the integration scheme to 

integrate the model equation for DWDM systems. There 
are two forms of nonlinearity that will be considered. 
These are Kerr law and parabolic laws of nonlinear 
media. The study will therefore be split into the next two 
subsections based on the type of nonlinear medium. 

 
2.1.1 Kerr law nonlinearity  
 
This type of nonlinearity is alternatively referred as 

cubic nonlinearity.  It originates when a light wave in an 
optical fiber is subjected to nonlinear responses. The 
dynamics of soliton propagation through Kerr law 
nonlinear fibers in DWDM system is given by [1-8] 
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Here, Nl ≤≤1 . The first term in (6) on left hand 

side is the evolution term, while la  represents the 
coefficient of group velocity dispersion (GVD). Then, 

lb  is the coefficient of self-phase modulation (SPM) 

while nlα  are the coefficients of cross-phase 
modulation (XPM). The independent variables are x  
and t  that represents the spatial and temporal variables 
respectively. The dependent variable is ),()( txq l  that 
gives the soliton profile in every single channel. In (6), 
the first term is the temporal evolution, while a  is the 
coefficient of group-velocity dispersion (GVD). Finally 
b  and k  are the coefficients of the nonlinear terms. We 
may choose the following traveling wave 
transformations 
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tvx l )(−=ξ , Nl ≤≤1                                (7-2) 
 
where )(lκ , )(lω , )(lθ  and )(lv  respectively represent the 
frequencies, wave numbers, phase constants and the speed of 
the waves.  

Thus, from Eq. (7), we have  
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Substituting Eqs. (7)-(9) into Eq. (6) and then 

decomposing into real and imaginary parts respectively 
yields 
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and  
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where Nl ≤≤1 .  

Balancing ( )″)(lU  with ( ) )(2)( ln UU  in Eq. (11) give 

1)( =lM . Therefore, the solution of Eq. (11) can be written 
in the form  
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where )(ξG satisfies the second-order linear ordinary 
differential equation 
 

0)()()( =+′+′′ ξµξλξ GGG                           (13) 
 
where λ  and µ  are real constants to be determined.  

Substituting  Eq. (12)  in  Eq. (11)  and  equating  all  
the  coefficients  of  powers  of  G’/G  to  be zero, then we 
obtain a system of nonlinear algebraic equations and by 
solving it, we have 
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where λ , )(lκ , )(

1
ls , µ   are arbitrary constants.  

Substituting the solution set (14) into Eq. (12), the 
solution formulas of Eq. (11) can be written as  
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Substituting the general solutions of second order 

linear ODE into Eq. (17) gives three types of traveling 
wave solutions. 

Case-I: When 042 >−=∆ µλ , we obtain the 
hyperbolic function traveling wave solution 
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where 1C  and 2C  are arbitrary constants and la  are 
given by 
 

( ) ( ) ⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−= ∑

≠

2
)(

1
2)(

12
1 N

ln

l
l

n
nll sbsαω           (17) 

 
On the other hand, assuming 01 ≠C  and 02 =C , the 

topological 1-soliton solution of the Eq. (6) can be written 
as. 
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Next, assuming 01 =C  and 02 ≠C , then we obtain 

the Eq. (6)  
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Equations (18) and (19) are dark and singular solitons 

respectively. 
Case-II: When 042 <−=∆ µλ , we obtain the 

hyperbolic function traveling wave solution  
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where 1C  and 2C  are arbitrary constants and la  are 
given by  
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Also, with the assumption 01 ≠C  and 02 =C ,  
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and when 01 =C , 02 ≠C , the solution of Eq. (6) will 
be  
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Equations (22) and (23) are singular periodic 

solutions that are not studied in nonlinear fiber optics.  
Case III: When 042 =−=∆ µλ , we obtain the 

rational function solution  
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This solution is sometimes refereed to as plane 

wave solution.  
 

2.1.2 Parabolic law nonlinearity  
 

The parabolic law nonlinearity appears when 
considerable )5(χ  nonlinearity is experienced, and is 
referred to as the fifth order susceptibility [3, 14, 15]. It 
is predominantly present in a transparent glass with 

intense femtosecond pulses at 620 nm. In this case NLSE is 
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In (25), SPM terms are the coefficients of lb  and lc , 

while XPM coefficients are nlα , nlβ  and nlγ , while the 
remaining parameters have the same definition as in Kerr 
law nonlinear medium. Substituting Eqs. (7)-(9) into Eq. 
(25) and then decomposing into real and imaginary parts 
respectively, yields 
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Balancing ( )″)(lU  with ( ) ( )3)(2)( ln UU  in Eq. (27) 

give 
2
1)( =lM . Therefore, the solution of Eq. (27) can be 

written in the form [13]  
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where )(ξG satisfies the second-order linear ordinary 
differential equation 
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where λ  and µ  are real constants to be determined.  

Therefore, we have  
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Substituting (28)-(31) into (27) and equating all the 

coefficients of powers of G’/G to be zero, then we obtain 
a system of nonlinear algebraic equations and by solving 
it, we have  
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0=µ                                                             (32-4) 

 
where λ , )(lκ , )(ls  are arbitrary constants.  

From Eqs. (7), (26), (28), (29) and Eq. (32), we 
obtain the exact traveling wave solution of the Eq. (25) 
as follows:  
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where 1A   and 2A   are arbitrary constants. 
Eq. (33) is a new type of exact traveling wave solution 

to the Eq. (25). Especially, if we choose 21 AA =  in Eq. 
(33), we obtain the solitary wave solution of the Eq. (25), 
namely   
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and  
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Remark: The exact solutions (33)-(35) are valid only if  
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3. Conclusion 

 
This paper obtained singular and dark optical 

solitons in DWDM system. The G’/G-expansion scheme 
was applied for Kerr and parabolic laws of nonlinearity. 
Dark and singular optical soliton solutions were 
obtained. Additionally, singular periodic solutions were 
also listed, which are of no interest in the optical fibers 
regime. This scheme is unable to obtain bright soliton 
solution since this is an inherent drawback of this 
algorithm.  

The results of this paper carry good hope for the 
future. Later, several other integration schemes will be 
applied where other types of soliton solutions could be 
available. Those results are awaited at this time and will 
be reported in future.  
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